A Good Compromise: Rapid and Robust Species Proxies for Inventorying Biodiversity Hotspots Using the Terebridae (Gastropoda: Conoidea)
نویسندگان
چکیده
Devising a reproducible approach for species delimitation of hyperdiverse groups is an ongoing challenge in evolutionary biology. Speciation processes combine modes of passive and adaptive trait divergence requiring an integrative taxonomy approach to accurately generate robust species hypotheses. However, in light of the rapid decline of diversity on Earth, complete integrative approaches may not be practical in certain species-rich environments. As an alternative, we applied a two-step strategy combining ABGD (Automated Barcode Gap Discovery) and Klee diagrams, to balance speed and accuracy in producing primary species hypotheses (PSHs). Specifically, an ABGD/Klee approach was used for species delimitation in the Terebridae, a neurotoxin-producing marine snail family included in the Conoidea. Delimitation of species boundaries is problematic in the Conoidea, as traditional taxonomic approaches are hampered by the high levels of variation, convergence and morphological plasticity of shell characters. We used ABGD to analyze gaps in the distribution of pairwise distances of 454 COI sequences attributed to 87 morphospecies and obtained 98 to 125 Primary Species Hypotheses (PSHs). The PSH partitions were subsequently visualized as a Klee diagram color map, allowing easy detection of the incongruences that were further evaluated individually with two other species delimitation models, General Mixed Yule Coalescent (GMYC) and Poisson Tree Processes (PTP). GMYC and PTP results confirmed the presence of 17 putative cryptic terebrid species in our dataset. The consensus of GMYC, PTP, and ABGD/Klee findings suggest the combination of ABGD and Klee diagrams is an effective approach for rapidly proposing primary species proxies in hyperdiverse groups and a reliable first step for macroscopic biodiversity assessment.
منابع مشابه
Using ecological niche modeling to determine avian richness hotspots
Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness...
متن کاملTwo New Species of Terebra (gastropoda, Conoidea) from Colombia
Two new species of the genus Terebra are described conchologically to the Atlantic coast of Colombia. The species are Terebra colombiensis and T. sterigmoides. They are differentiable mainly because of their sculpture, protoconch and spire angle. They are part of a group of Western Atlantic terebrids informally called “T. doellojuradoi complex” and differ from the Brazilian species in having we...
متن کاملCorrelating Molecular Phylogeny with Venom Apparatus Occurrence in Panamic Auger Snails (Terebridae)
Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids) is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins,...
متن کاملThe Terebridae and teretoxins: Combining phylogeny and anatomy for concerted discovery of bioactive compounds
The Conoidea superfamily, comprised of cone snails, terebrids, and turrids, is an exceptionally promising group for the discovery of natural peptide toxins. The potential of conoidean toxins has been realized with the distribution of the first Conus (cone snail) drug, Prialt (ziconotide), an analgesic used to alleviate chronic pain in HIV and cancer patients. Cone snail toxins (conotoxins) are ...
متن کاملVenomous auger snail Hastula (Impages) hectica (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology.
The >10,000 living venomous marine snail species [superfamily Conoidea (Fleming, 1822)] include cone snails (Conus), the overwhelming focus of research. Hastula hectica (Linnaeus, 1758), a venomous snail in the family Terebridae (Mörch, 1852) was comprehensively investigated. The Terebridae comprise a major monophyletic group within Conoidea. H. hectica has a striking radular tooth to inject ve...
متن کامل